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A magnetic monopole may be defined as a region of space, which can be enclosed 
by a two-dimensional surface S, such that the total flux of magnetism through S is 
non-zero. If B is a three-dimensional vector representing the magnetic field, and .Q is 
the unit normal vector on S, then we may express this statement by the equation 
If B · n dS =1= 0, where the integral extends over S. More loosely, one may conceive 
of a magnetic monopole as a particle endowed with a "magnetic charge", by anology 
with electric charge. 

In classical physics, the electric and magnetic fields are governed by a set of partial 
differential equations due to Maxwell. One of these equations is essentially 
equivalent to the statement that the above· double integer should vanish: that is, 
the Maxwell equations imply that magnetic monopoles do not exist. Indeed, with 
a few controversial exceptions, no observations of such particles have yet been made. 
However, it is to be emphasized that the Maxwell equations merely express in 
mathematical form the condition that magnetic monopoles do not exist, and that 
it is a trivial matter to modify them (in a way which affect no other prediction of 
the theory) so that magnetic charge is in fact permitted. Thus, the non-existence of 
magnetic monopoles cannot truly be regarded as a prediction of the Maxwell theory­
on the contrary, many authors have argued, essentially on aesthetic grounds, that 
the form of the Maxwell equations suggests that magnetic charge should exist. In 
other words, no fundamental physical principle is known which can explain the 
apparent non·existence of a magnetic analogue of electric charge. 

An ingenious and persuasive argument in favour of the existence of magnetic 
monopoles was put forward by Diract in 1931. The fact that the electric charge 
of all particles is an integral multiple of the electron charge (we ignore quarks) cannot 
be explained by Maxwell's theory; nor, however, can it be derived from the 
conventional formalism of the quantum theory. Dirac observed that if magnetic 
monopoles do exist the wave function- the fundamental mathemati~al object of the 
quantum theory - will not be single-valued unless a particular quantity is required 
to take on integral values. This proves to be possible only if the electric charge of 
any particle described by the wave function is an integral multiple of some basic 
charge. Thus, the existence of magnetic monopoles would allow us to explain 
an observed fact - the quantisation of charge - for which no other explanation is 
available. This constitutes strong circumstantial evidence in favour of the existence 
in favour of such particles. Dirac's argument is not affected by the extreme rarity 
of monopoles; neither the separations of the various particles, nor their 
abundances, enter the discussion at any stage. In the most extreme case, therefore. 
the existence of a single monopole would suffice to quantise the charge of every 
charged particle in the (casually accessible) universe. 
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In recent years, further circumstantial evidence in favour of the existence of 
magnetically charged particles has been uncovered, and this had led to an enormous 
increase in interest in the subject. In order to discuss these developments, we must 
consider gauge theories. 

Maxwell's equations play such an important role in the electro-magnetic theory that, 
in common parlance, the theory is often identified with the equations. The discovery 
of a set of equations governing the fields is a crucial step in the development of any 
"force-field" theory. By 1940, four apparently distinct types of forces were known: 
gravitation, electromagnetism, the "weak" forces (responsible for certain types of 
radioactive decay), and the "strong" force (responsible for holding nuclei together 
.against their internal electrical repulsion). In only the first two cases, however, 
were field equations known, and this long remained a major obstacle in the path 
of attempts to gain a deeper understanding of the weak and strong interactions. 

The field equations of electromagnetism have remarkably little in common with 
those of gravitation (Einstein's equations), a fact which never ceased to disturb 
Einstein himself. A noteworthy exception is the fact that both sets of equations 
exhibit a high degree of "symmetry". By this is meant that each set of equations 
is invariant under the action of some (Lie) group of transformations of its variables 
(not, however, the same group in each case). The basic idea of "gauge" theory -
the name arises from irrelevant historical cicumstances - is to invert this observation: 
that is, instead of asking, "Given a set of field equations, what are the symmetries?" 
we ask, "Given a Lie group, what are the field equations possessing this symmetry?". 
Of course, we cannot expect a unique answer to such a question, but gauge theory 
does embody a particular procedure for answering it, and we shall argue that this 
prodedure is extremely natural from a mathematical point of view. Thus, one may 
conceive of gauge theory as an explicit "algorithm" which associates a definite set 
of G-invariant field equations with any Lie group G. In this way, we provide 
ourselves with a large array of internally consistent sets of field equations, and our 
hope is that the field equations of the weak and strong interactions may be found 
among this array. 

In view of the fact that there are infinitely many different classical Lie groups, 
it may seem that gauge theory presents an embarrassment of riches and, to a certain 
extent, this is indeed the case. In practice, the method has worked extremely well. 
(In the following discussion, U(n) denotes the group n x n unitary matrices and 
SU(n) the subgroup of elements with unit determinant.) It now seems probable 
that the gauge equations corresponding to SU(3) constitute a suitable set of field 
equations for the strong interaction, and there is convincing evidence that the 
gauge equations arising from U(2) govern the weak and electromagnetic interactions 
simultaneously. This last theory provides a classic example of what is called a "gauge 
unification". The act~on of U(2) leaves the full set of field equations invariant, 
but mixes the weak and electromagnetic fields, so that the two interactions cannot 
be separated in an invariant fashion. In this very precise sense, we have a unified 
field theory. * The next step is to attempt to unify this "electroweak" interaction 
with the strong interaction, by considering a semi simple group which includes 

* It is not widely known that Einstein was well aware of the importance of the "symmetry" concept in 
defming the term "unified field theory", at least a decade prior to the advent of gauge theory. 
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SU(3) x U(2) as a subgroup. Theories of this type unify three of the four known 
interactions (the inclusion of gravitation remains problematic) and are called "grand 
unified theories". A large class of such theories predict that the proton (which had 
previously been considered infinitely stable) should decay extremely slowly, and 
intensive experimental studies are at present being conducted to detect any such 
effect. 

The relevance of all this to our topic derives from the fact that there is strong 
evidence to suggest that the field equations of most grand unified theories admit 
"magnetic monopole" solutions. (To be precise, the solutions in question represent 
stable concentrations of energy, which resemble magnetic monopoles when viewed 
from a large distance.) These monopoles possess various characteristics such as 
enormous masses, more than 10" times that of the proton - which would identify 
them as "grand unified monopoles", so that their discovery would be regarded as 
concrete evidence in favour of grand unification. It has also been suggested that 
such monopoles could "catalyse" the decay of protons in their vicinity. (This 
process has (half seriously)been proposed as a future energy source.) For all these 
and other reasons, current interest in the experimental theoretical status of 
monopoles is intense. t 

II 

One of the most profound and fascinating features of gauge theory is the fact 
that it provides an example of the phenomenon called by Wigner "the unreasonable 
effectiveness of mathematics in the physical sciences". It is well known that the 
pure-mathematical work of Riemann (and his successors) on classical differential 
geometry provided Einstein with the basic framework for general relativity. Perhaps 
it is fitting, then, that modern differential goemetry stands in a similar relation to 
gauge theory. Almost the entire underlying mathematical framework of gauge 
theory is implicit in the work of Ehresmann, Chern and the other founders of modern 
differential geometry. Indeed, Wu and Yang have given a partial "dictionary"wherein 
all the basic concepts of gauge theory find a purely geometry counterpart. The 
existence of this geometric version of gauge theory, combined with general relativity 
theory, allows us to assert that all four fundamental forces of nature are (in some 
sense) manifestations of geometry. 

This new formulation of gauge theory finds a particularly beautiful application 
in monopole theory. Let M denote the space-time manifold and let G be any Lie 
group. The product manifold M x G provides an example of what is known as a 
principal fibre bundle over M. In an obvious sense, M x G is a global product. A 
natural generalisation can be obtained if we consider a space P which is locally 
a product of M and G : that is, the part of P which lies "over" any open 
neighbourhood U in M is taken to be isomorphic to U X G. Such a generalised 

t See the review article by C.A. Carrigan and W.P. Trower, Nature 305,673 (1983). 
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product is called a non-trivial principal fibre bundle. Arbitrary principal fibre 
bundles over a paracompact M admit certain natural geometric structures called 
connections. By examining the kinds of connections which a particular principal 
bundle can admit, we can learn much about the topology of the bundle. 

Upon examining the transformation behaviour of gauge fields under th.e action 
of the gauge group G, one finds that it is possible to identify gauge fields with 
connections in a principal fibre bundle which is locally a product of G with the 
space-time manifold M. It is possible to show that the local product structure 
can be extended to a gloabl product M x G if and only if M contains no magnetic 
monopoles. In this way, monopole theory acquires a deep mathematical interpretation. t 

What is the value of this new formulation of gauge theory? The subject is not 
yet sufficient mature for a final assessment to be possible, but a number of motives 
can be given for developing it further. Firstly, the fire bundle formulation 
immediately renders it possible to state any gauge-theoretic problem in such a way 
that various extremely powerful techniques of differential geometry, algebraic 
topology, and so on, can be brought to bear on its solution. Thus the new approach 
is of value even from a purely technical point of view. 

Secondly, and perhaps more importantly, experience has shown the way in which 
a theory is formulated can be absolutely decisive when we attempt to generalise that 
theory. It is most unlikely that general relativity theory could •have been 
constructed except on the basis of Minkowski's work on space-time: and yet 
Minkowski 'merely' reformulated special relativity in a mathematically opposite 
way. The fact that no plausible gauge theory which unifies all four interactions 
(grand unified theories exclude gravitation) has yet been proposed, probably 
indicates that a generalisation of gauge theory is called for. As we consider the 
problem of general ising gauge theory so as to construct a final synthesis of all known 
interactions, we are in much the same situation as Einstein when he began work on 
general relativity. It may not be idle to speculate that, as in the case of relativity, 
geometric ideas will play a fundamental role in the solution of this problem. 

tSee the review paper ofT. Eguchi, P.B. Gilkey, and A.J. Hanson, Phys. Rep. 66, 213(1980). 
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